US009384094B2

a2z United States Patent 10y Patent No.: US 9,384,094 B2
Teli et al. 45) Date of Patent: Jul. 5, 2016
(54) METHOD AND SYSTEM FOR INSTANT 6,851,073 B1* 2/2005 Cabreraetal. 714/15
RESTORE OF SYSTEM VOLUME FROM A 7,353,355 B1* 4/2008 Tormasov GO6F 11/1417
707/999.202
BACKUP IMAGE 7,398,365 B1* 7/2008 Hardman 711/162
7478,117 B1* 1/2009 Lamb et al
(71) Applicant: Symantec Corporation, Mountain View, 7,480,793 Bl* 1/2009 Maar?she,,,a, ,,,,,,,,, 7132
CA (US) 7,725,704 B1* 5/2010 Beaverson et al. . 7132
7,979,690 B1* 7/2011 Dyatlovetal. 713/2
(72) Inventors: Ravindra Teli, Pune (IN); Mohammad 8,006,125 BI : 8/2011 Mengetal. ... - 714/6.12
Eliyas Shaikh, Maharashtra (IN); 8,145,607 Bl 3/2012 Ko_rshunov etal. 707/674
?’ > ’ 8,200,637 B1* 6/2012 Stringham 707/670
Chirag Dalal, Pune (IN) 8,712,968 BL* 4/2014 Chester ctal. .. . 707/649
8,818,936 B1* 82014 Haaseetal. 707/610
(73) Assignee: VERITAS US IP HOLDINGS LLC, 8,856,591 B2* 10/2014 Wangcc......... GOG6F 11/1417
Mountain View, CA (US) i 714/15
2003/0046605 ALl* 3/2003 Qin ..ccccovevveieeininnecne. 714/13
. 2005/0177716 Al* 82005 Ginteretal. T13/157
(*) Notice: Subject. to any dlsclalmer,. the term of this 5006/0018505 Al* 12006 Cherian ot al. .. " 382/100
patent is extended or adjusted under 35 2006/0143501 Al* 6/2006 Tormasov etal. 714/5
U.S.C. 154(b) by 435 days. 2007/0078801 Al* 4/2007 Guruprakash 707/1
2007/0271311 Al* 112007 Ikedaetal. 707/201
(21) Appl. No.: 13/736,664 2008/0040726 Al* 2/2008 Xing 719/312
2008/0201536 Al™* 82008 Harsccoeevevevnennee 711/154
(22) Filed: Jan. 8,2013 (Continued)
(65) Prior Publication Data Primary Examiner — Thomas Lee
US 2014/0195791 Al Jul. 10. 2014 Assistant Examiner — Santosh R Poudel
(74) Attorney, Agent, or Firm — Patterson + Sheridan, LL.P
(51) Imt.ClL
GO6F 11/14 (2006.01) (57) ABSTRACT
(52) US.CL)))
CPC ... GO6F 11/1417 (2013.01); GOGF 11/1469 Techniques are disclosed for restoring a system volume on a
(2013.01) computing system without requiring the system volume to be
(58) Field of Classification Search fully restored prior to being used or requiring the use of a
CPC GO6F 9/4401: GO6F 11/1417: GO6F 11/1469 dedicated recovery environment (e.g., the WinPE or BartPE
USPC ..o ISR S 713/2 environments). Instead, the computing system is booted
See application file for complete search history. directly from the restore image or by redirecting I/O inter-
rupts to the restore image. That is, when user initiates a restore
(56) References Cited process, the system boots from the backup itself. Once

6,751,658 B1*
6,820,214 B1* 11/2004 Cabreraetal. 714/15

U.S. PATENT DOCUMENTS

6/2004 Haunetal.ccccoeoe. 709/222

booted, a background process can complete the restore pro-
cess.

14 Claims, 10 Drawing Sheets

300

| RECEIVE | / O REQUEST }<7

IF WRITE REQUEST,
WRITE TO
SYSTEM VOLUME,
UPDATE RESTORE MAP

330

NO

READ FROM
BACKUP VOLUME,
PERFORM COPY-

ON READ

§

325

320
315 g
REQUEST YES READ
FOR RESTORED, FROM | _ |
WRITTEN SYSTEM
BLOCK VOLUME

\ 305

310

READ
REQUEST
?

?

US 9,384,094 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2009/0300305 Al* 12/2009 Liu ..o

2009/0327367 Al* 12/2009 Mehraetal.
2010/0023561 Al*
2011/0218966 Al*
2012/0054744 Al*

1/2010 Zlotnick
9/2011 Barnes et al.

GO6F 11/1451

3/2012 Singhetal.cccocevvnnne. 718/1

2012/0151136 Al*
2012/0272095 Al*

2012/0284494 Al*
2013/0024726 Al*

711/162 2013/0219161 Al*
...... 707/205 2014/0013096 Al*
... 707/203

707/645
* cited by examiner

6/2012
10/2012

11/2012
1/2013
82013
1/2014

Hayetalccooeeeeennn 711/114
Lit e GOG6F 8/665

714/6.1
Funk et al. 713/2
Andrews et al. . 714/15
Fontignie et al. 7132
Liverance etal. 713/2

US 9,384,094 B2

Sheet 1 of 10

Jul. §5,2016

U.S. Patent

| "OId

001 ™

0gl

JANTOA
1394Vl
JHOLS3H

W31SAS ONILNdWOD

Gol

L0l

0Ll ™

JOVII
dMiovd

JANTOA

dNXdve

HEN / Solg

L H3ARAHALTIAMSIA -

02k~ |Z1r N3IANAQH3LTH INNTOA
= WILSAS ONILYYILO
gzl~ SNOILYDIddY

U.S. Patent

Jul. §5,2016 Sheet 2 of 10

(BEGIN)

!

US 9,384,094 B2

200

DURING SYSTEM BOOT, RECEIVE COMMAND
TO RESTORE SYSTEM VOLUME (e.g., DISK0)

~— 205

!

MBR PROCESS REDIRECTS INT 13
(1/0 READ / WRITE) TO BACKUP VOLUME
(e.g., DISK 1)

~— 210

|

OS LOADER LAUNCHES OPERATING
SYSTEM FROM BACKUP VOLUME

~~— 215

!

DISK FILTER DRIVER LOADED AS
PART OF OS READS FROM BACKUP
VOLUME WRITES TO SYSTEM VOLUME

~— 220

!

ONCE SYSTEM VOLUME FULLY
RESTORED, NOTIFY OS/USER

~— 225

!

(END)

FIG. 2

U.S. Patent Jul. 5, 2016 Sheet 3 of 10 US 9,384,094 B2

300
{ BEGIN)
RECEIVE |/ O REQUEST |~
\ 305
IF WRITE REQUEST, NO READ 310
WRITE TO REQUEST
SYSTEM VOLUME,
UPDATE RESTORE MAP ?
A%
330 320
315 g
READ FROM REQUEST YES READ
BACKUP VOLUME, FOR RESTORED, FROM -
PERFORM COPY- WRITTEN SYSTEM
ON READ BLOCK VOLUME
S ?
325

FIG. 3

US 9,384,094 B2

Sheet 4 of 10

Jul. §5,2016

U.S. Patent

00¥ ™~

¥ Old
ow:q WALSAS ONILNAWOD
JNNTOA WILSAS [~
v1va dnMovd
ONIMOLS (QHA') |~=
YSI1a Q¥VH TVNLYIA
w HIOVNVYA Lo0od
Sy
Sop -
~ | ¥3ANAa¥3LT4MSIA
AN
02~ W3ILSAS ONILYY3IdO
GZ¥ ~ SNOILY2IddY

U.S. Patent Jul. 5, 2016 Sheet 5 of 10 US 9,384,094 B2

500
(BEGIN)
!
BOOT LOADER PROMPTS FOR RESTORE POINT | 505
(e.g., BACKUP VHD AND TARGET VOLUME)
!
BEGIN BOOTING FROM BACKUP VHD, ~_ 510
LAUNCH OS AND LOAD VOLUME FILTER DRIVER
!
DISK FILTER DRIVER DIRECTS |/ O REQUESTS | 515
WHILE RESTORING SYSTEM VOLUME
Y
NOTIFY OS / USER WHEN ~_ 520
RESTORE IS COMPLETE

!

(END)

FIG. 5

US 9,384,094 B2

Sheet 6 of 10

Jul. §5,2016

U.S. Patent

0€9

{

Ge9)

HIAEIS YHOMLAN

N

3714 aHA “Be
139HVL dNXMOVE

1394Vl
ISOS!

0v9

9 Old

099

009 ™

W3LSAS ONILNAWNOD

G09 ™M JANTOA W3LSAS
219~ HIAIFIA "3 11714 FNNTOA
$09~ ¥H3IAIEA Y3114 MSIa
ININOdWOD
209 ™ ONIMHOMLAN
d3dvo1 1004
019~ NOIILNO3X3-THd
029~ W31SAS ONILVH3dO
G29 ™ SNOILYOIddV

U.S. Patent Jul. 5, 2016 Sheet 7 of 10 US 9,384,094 B2

700
(BEGIN)
!
AT INITIAL STARTUP, LAUNCH BOOT LOADER | 705

(e.g., CUSTOM PXE BOOTLOADER)

!

REDIRECT INT 13 READ / WRITE | 10's
COMING TO SYSTEM VOLUME TO NETWORK [~ 710
BACKUP RESTORE VOLUME

!

MOUNT RESTORE VOLUME (e.g., .VHD)
EXPOSED AS iSCSi DEVICE

~— 715

!

DISK FILTER DRIVER LOADS OS FILES
FROM RESTORE VOLUME (1/ O READS) WRITES [~ 720
DATA TO RESTORE VOLUME (I/ O WRITES)

!

TURN CONTROL FOR DISK I/ O OVER TO
OPERATING SYSTEM: LAUNCH VOLUME ~— 725
FILTER DRIVER

!

VOLUME FILTER DRIVER MANAGE |/ O
RESTORES SYSTEM VOLUME

~— 730

!

(END)

FIG. 7

US 9,384,094 B2

Sheet 8 of 10

Jul. §5,2016

U.S. Patent

0€8

{

H3AAS

S MHOMLIN

2€8 7

aHA

dNXove

re8 7 T

ONID

aHA
N34344Id

1394V1L

ISOS!

0v8

8 Old

098

008 ™

W3LSAS ONILNAWOD

G08 ™~

JANTOA WaLSAS

218 YIAINA YL INNTOA

018

z08

IN3INOdWOD
ONIMHOMLAN

H¥3dvo1 1008
NOIILNOIAXI-Idd

028 ™~

W3LSAS ONILVH3dO

G118~

SNOILVYOIlddY

U.S. Patent Jul. 5, 2016 Sheet 9 of 10 US 9,384,094 B2

900

(BEGIN)

!

INITIALIZE DIFFERENCING VHD ON BACKUP
SERVER; LAUNCH VOLUME FILTER DRIVER ~— 905
FOLLOWING NETWORK BOOT

!
PERFORM COPY-ON-READ FOR I/ O READS

DIRECTED TO NETWORK DRIVE - 910
!
PERFORM WRITE |/ O REQUESTS ~_ 915
TO SYSTEM VOLUME
!
FOLLOWING SYSTEM RESTORE; ENTER ~_ 920

REDIRECTED MODE PRIOR TO SYSTEM REBOOT

!

(END)

FIG. 9

U.S. Patent

Jul. §5,2016

US 9,384,094 B2

FIG. 10

Sheet 10 of 10
COMMUNICATION
1012 NETWORK
cPu | / O DEVICE NETWORK
INTERFACE INTERFACE
L
1005 1010 1015
APPLICATIONS RESTORE TARGET
T VOLUME (DISK 0)
1026
1036
OPERATING SYSTEM BACKUP VOLUME
1024
DISK FILTER DRIVER
INT 13 REDIRECTOR
FUNCTION N
1034
ooz 1032
MEMORY STORAGE
1020 1030
COMPUTING SYSTEM
1000

US 9,384,094 B2

1
METHOD AND SYSTEM FOR INSTANT
RESTORE OF SYSTEM VOLUME FROM A
BACKUP IMAGE

BACKGROUND

1. Field

Embodiments of the invention generally relate to tech-
niques for restoring a system volume from a backup. More
specifically, embodiments presented herein provide tech-
niques for performing instant restore by booting a system
directly from a backup image and then completing the restore
process as a background task.

2. Description of the Related Art

A storage device (e.g., a conventional magnetic disk drive)
providing a primary system volume for a computer can fail for
a variety of reasons. In large data centers, e.g., disk drives
typically have a known “mean time between failure” provid-
ing an average of how frequently a disk drive is expected to
experience a hardware failure. As another example, data
stored on a system volume can be corrupted, deleted, over-
written, or otherwise rendered unusable in many ways. When
these events occur, an administrator may have a few options
for how to restore a system volume when needed. Restoring a
system volume typically requires booting into a recovery
environment using a recovery disk storing a limited operating
environment, e.g., a WinPE/BartPE environment booted from
a CD-rom.

Creating and distributing such disks is a task unto itself.
Moreover, restoring a primary system volume using this
approach can require some time before the end user can have
the restored system available for use. For example, while
booted to the limited recovery environment, the user has to
wait until the complete backup image is copied to a system
volume before doing anything with the system. Once the
restore is complete, the user then reboots the system into the
primary operating environment. Depending on the size of the
backup image, this approach can create a significant down-
time for a computer system. In cases where the system being
restored provides significant applications/data (e.g., a server
for a small business), this downtime can be substantially
disruptive.

Similarly, some restore processes can restore a system
volume from a backup image located over a network. How-
ever, as with a local backup store, the network approach also
requires booting into recovery environment (e.g., WinPE) to
perform the restore process.

SUMMARY

One embodiment presented herein includes a method for
restoring a system volume from a backup image. This method
may generally include prior to launching a boot loader on a
computing system, receiving an indication to restore the sys-
tem volume from the backup image. This method may also
include redirecting an interrupt associated with disk [/O to a
redirector function configured to perform read operations
directed to the system volume from the backup image and
launching the boot loader. The boot loader is configured to
load an operating system stored in the backup image.

Still another embodiment includes method for restoring a
system volume. This method may generally include, prior to
launching a boot loader on a computing system, receiving an
indication to restore the system volume from a virtual hard
disk (VHD). This method may also include launching a disk
filter driver configured to attach to a driver configured to
perform disk I/O from the VHD, wherein the disk filter driver

10

15

20

25

30

35

40

45

50

55

60

65

2

is configured to perform read operations directed to the sys-
tem volume by reading from the VHD and to perform write
operations by writing to the system volume. After booting an
operating system stored on the VHD, completing the restor-
ing of the system volume from the backup image by copying
disk sectors from the VHD to the system volume.

Other embodiments include, without limitation, a com-
puter-readable medium that includes instructions that enable
a processing unit to implement one or more aspects of the
disclosed methods as well as a system having a processor,
memory, and application programs configured to implement
one or more aspects of the disclosed methods.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited aspects are
attained and can be understood in detail, a more particular
description of embodiments of the invention, briefly summa-
rized above, may be had by reference to the appended draw-
ings.

It is to be noted, however, that the appended drawings
illustrate only typical embodiments of this invention and are
therefore not to be considered limiting of its scope, for the
invention may admit to other equally effective embodiments.

FIG. 1 illustrates an example computing environment con-
figured to provide a pre-boot instant restore of system vol-
ume, according to one embodiment.

FIG. 2 illustrates a method for performing a pre-boot
instant restore of system volume, according to one embodi-
ment.

FIG. 3 illustrates a method for responding to an /O request
as part of performing a pre-boot environment-free instant
restore of system volume, according to one embodiment,
according to one embodiment.

FIG. 4 illustrates an example computing system configured
to provide an instant restore of system volume from a backup
image captured in a virtual hard disk (VHD) format without
the use of a pre-boot environment, according to one embodi-
ment of the invention.

FIG. 5 illustrates a method for performing an instant
restore of system volume from a backup image captured in a
virtual hard disk (VHD) format, according to one embodi-
ment.

FIG. 6 illustrates an example computing system configured
to provide an instant restore of system volume while booting
from a backup image located on a network location, accord-
ing to one embodiment.

FIG. 7 illustrates a method for performing an instant
restore of system volume while booting from a backup image
located on a network location, according to one embodiment.

FIG. 8 illustrates an example computing system configured
to provide an instant restore of system volume while booting
from a backup image located on a network location, accord-
ing to one embodiment.

FIG. 9 illustrates a method for performing an instant
restore of system volume while booting from a backup image
located on a network location, according to one embodiment.

FIG. 10 illustrates an example computing system config-
ured to perform an instant restore of a system volume, accord-
ing to one embodiment.

DETAILED DESCRIPTION

Embodiments of the invention provide techniques for
restoring a system volume on a computing system without
requiring the system volume to be fully restored prior to being
used or requiring the use of a dedicated recovery envito the

US 9,384,094 B2

3

restore image. That is, when user initiates a restore process,
the system boots from the backup itself. Once booted, a
background process can complete the restore process.

In one embodiment, the backup image may be stored on a
local storage volume of the computing system (or accessed
over a USB connection). When the user boots the system, the
BIOS may allow a user to specify to boot the system in a
restore mode. In such a case, the MBR (master boot record)
may include code to hook interrupt 13 (INT13) with a redi-
rector function (sector read function). The redirector function
may be generally configured to read from the backup image
when requests to read the boot disk sector are issued. That is,
when the system makes a read request, the INT13 hooked by
the redirector function may read data from the backup image.
Once the operating system driver takes over for disk I/O, read
operations are performed by reading from the backup vol-
ume, while write operations are made to the volume being
restored. That is, the operating system driver may determine
the correct volume (either the backup image or volume being
restored) to satisfy a given read or write 1/O request.

The INT13 hook may be implanted prior to passing control
to a boot manager (e.g. ntldr/winload) for loading the oper-
ating system kernel. Doing so ensures that all sector reads for
the boot disk sector are read from the system volume backup
image. The redirector function may read disk sectors from a
backup image stored on local device (USB/local/flash disk in
case of BIOS). Every sector read from the image through
redirector function will also be written to the active disk
thereby initiating the restore process. That is, the redirector
function may perform a copy-on-read process to begin restor-
ing a system volume at the same time the system is being
booted from the backup image. This approach allows the boot
manager to load all configured drivers before giving control to
the operating system kernel. In other embodiments, the
instant restore process may start immediately after booting,
after the operating system kernel is loaded, or upon user
selection of destination drive. Alternatively, a user could
select the destination disk as an option using a custom boot-
loader, allowing instant restore to commence during boot up
process itself.

Once the operating system kernel takes over (transitioning
from real mode to protected mode), the I/O redirection and
restore process may be managed by a disk filter driver stored
in the backup image. That is, once the basic system is up, a
restore service will start restore of remaining sectors from the
backup image at low priority in the background.

In another embodiment, the backup image may be stored in
a virtual hard disk (VHD) format. As is known, some operat-
ing systems (e.g., Windows® Server 2008R2) can be booted
directly from a VHD file as though it were a physical disk. In
such a case, a user may boot a system being restored from the
VHD file by specifying to restore a given target volume using
a system image stored in a VHD file that contains the backup
image. Of course, other backup image or virtual disk formats
may be used. In this embodiment, to perform a restore pro-
cess, a disk filter driver attaches to the VHD driver exposing
the backup image of a system volume contained in the VHD
file. The disk filter driver loads with the kernel during system
boot and monitors I/O during system boot. For every read I/O
to the VHD, the disk filter driver reads data from the VHD
before passing it to an upper layer (i.e., to the requesting
process the read I/O). The disk filter driver also restores data
read from the VHD to a target location (e.g., to a primary
system volume). For every write /O, the disk filter driver
redirects the write I/O to a target location directly. That is, to
perform the restore process, the disk filter driver generally
processes read requests by reading from a block from the

5

10

20

25

30

35

40

45

55

60

65

4

VHD file (until that block is restored, after which reads are
sent to the restored volume) and generally performs write
requests by writing to a block on the system volume (and
marking that block as having been restored following a write).
Other blocks on the VHD blocks are restored at a low priority
in the background. Once the complete system volume is
restored, the disk filter driver may transition into a pass-
through mode. Alternatively, a volume filter driver could per-
form the restore process, i.e., rather than configure the low
level disk filter driver to perform the restore process, an oper-
ating system level volume filter driver could restore specific
volumes from the backup image.

In still another embodiment, the restore volume may be
accessed over a data communications network. For example,
the user may select to perform a restore process where the
system is booted over the network using SAN/iSCSI, etc.
Once the system is booted from a backup image, a disk filter
driver in the operating system performs copy-on-read opera-
tions to restore data to restore volume. In this embodiment,
the restore process includes booting from the physical disk
and not the backup image. The interrupt 13 (INT13) hook and
later the disk filter (once the OS stack builds up) fulfill I/O for
physical disk by redirecting read requests to backup image.
For example, a network boot loader (e.g., gPXE) can present
abackup image located on network location as a block device
to the local system. In one embodiment, a custom boot loader
implements logic for a block device protocol (e.g. SCSI) and
also a network protocol (e.g., a TCP/IP stack configured using
DHCP). Such a custom boot loader may also implements an
INT13 hook like the one discussed above. Doing so allows all
reads to the boot sectors to be redirected to the network
storage location (as requests for iSCSI blocks). Together, this
presents the backup image on the network as a block device to
the local system. The INT13 hook redirects read I/Os coming
to the primary system volume (i.e., the volume being
restored) to the emulated disk (i.e., a VHD file mounted using
the custom boot loader).

The VHD file may be exposed as a block device using two
components. First, a client side component, a module of
custom boot loader performs the role of an iSCSI initiator,
and second, a server side component located on target desti-
nation (e.g., a network server hosting the backup VHD file.
The server side component could be a iSCSI target software
that can expose a backup image as a block device to the
initiator. There are commercially available iSCSI target soft-
ware providers. Most of them currently support VHD and
VMDK both. Of course, custom iSCSI target software as
detailed in RFC 3720 could be used to support other backup
image types.

This way, the system still boots from the primary system
volume (e.g., a physical disk 0 in a Windows® operating
system environment). During initial stages of booting (i.e.
loading a registry, operating system loader, kernel and depen-
dencies, boot start drivers etc.) the custom boot loader loads
the necessary files for the OS to come up and build its stack.

At some point, the operating system stops using BIOS
services and the boot loader (e.g., the gPXE stack) for disk
1/0. From this point, a disk filter driver included in the backup
image may redirect read I/Os coming to the system volume
being restored (i.e., to disk 0 in a Windows® operating system
environment) to the iSCSI disk mounted by the iSCSI driver
in the operating system. As noted, the iSCSI driver commu-
nicates with the iSCSI target to expose a VHD (backup
image) as a block device. The disk filter driver also copies
read data to the volume being restored (i.e., to disk) to accom-
plish a silent restore of this volume. Write I/Os to the volume
being restored are written directly to this volume. In one

US 9,384,094 B2

5

embodiment, the VHD exposed to system being restored will
be a differencing (empty) VHD created on top of a backup
image VHD. Doing so allows write [/Os to be temporarily
accumulated in case of a retargeted system. Write 1/O hap-
pening to the volume when booted from backup image always
goes to both the differencing disk (e.g., a VHD/VMDK, etc.)
and the target disk. Doing so allows a system restore to be
continued if the system had been shut down during an earlier
instant restore in progress. The mirroring also allows the
restore process to manage check-point restore. Note this
approach does not require the system to be rebooted after
being restored. After a complete system restore, the disk filter
driver acts in a complete pass-through mode.

In another embodiment, rather than modify the network
boot loader (e.g., by creating a custom version of the gPXE
boot loader) to mount and boot the backup image, the system
is booted from the emulated disk instead of the physical disk.
Doing so avoids having to create custom boot loader (e.g., a
custom version of gPXE with INT13 hook). Instead, a volume
filter driver performs a copy-on-read in the background to
restore data to the physical disk. Throughout the session, the
system will have been booted from the networked location. In
one embodiment, the networked location includes a backup
image VHD behind a differencing VHD. The differencing
VHD is used to capture any writes made to the backup image
VHD during the restore process. As the restore process
progresses, more and more data will be written to physical
disk being restored. When all the data is restored, all the I/O
to the network disk (i.e., the VHD file exposed as iSCSI block
device) will be read from the physical disk instead of the
iSCSI block device. Unlike the approach relying on a modi-
fied boot loader, the volume filter driver acts fully in redi-
rected mode once all blocks are restored. Upon next reboot,
the system can boot from the restored system volume (e.g.,
disk 0) instead of iSCSI disk through the gPXE stack. How-
ever, reboot is still not a requirement post restore. Alterna-
tively, a disk filter driver could perform the restore process,
i.e., rather than perform the restore process using the volume
filter driver of the operating system level, a low level disk
filter driver could perform restore process from the backup
image.

Asjustdescribed, in some embodiments, the instant restore
process operates by booting from the disk being restored.
However, /O reads are redirected from that disk to the backup
store. For example. the system may boot from physical disk
instead of backup image and use an interrupt 13 (INT 13) to
read from a backup system. In another approach, the reads
may be redirected to a network backup image. In either case,
once the operating system stack comes up, operating system
drivers included in the backup image may perform redirection
and restore.

Alternatively, for other embodiments, the instant restore
process operates by booting from the backup image being
restored, and then operating in a complete passive mode once
the restore is complete. Here again, I/O reads are performed
by reading from the backup image. At the same time, a copy-
on-read process is used to perform the restore process. For
example, a computing system being restored may boot from
backup image instead of physical disk. In such a case, no
interrupt 13 (INT13) hook is used. Instead, the system boots
from the backup image, e.g., using out of the box solutions
such as Windows® native boot VHD or a Sanboot process
using gPXE. Once booted, the systems performs redirection
and restore using volume filter driver or lower local disk filter
driver.

10

15

20

25

30

35

40

45

50

55

60

65

6

In both cases, whether booted from the backup image or
physical disk, the OS stack can run a low priority process to
complete the restore process while the system executes user
applications.

Note, in addition to the four embodiments specifically
mentioned above, one of ordinary skill of the art will recog-
nize that embodiments of the invention may be adapted in a
variety of ways to allow a restore process to simultaneously
boot a restore image and copy that restore image to a target or
system volume. For example, the embodiments mentioned
above may also work with UEFI firmware (in place of BIOS).
A custom UEFI driver may replace the interrupt 13 (INT13
hook) In case of UEFI based systems. Also, similarly, the
gPXE stack supports booting from iSCSI disk for UEFI sys-
tems

Further, in the following, reference is made to embodi-
ments of the invention. However, the invention is not limited
to any of the specifically described embodiments. Instead,
any combination of the following features and elements,
whether related to different embodiments or not, is contem-
plated to implement and practice the invention. Furthermore,
although embodiments of the invention may achieve advan-
tages over other possible solutions and/or over the prior art,
whether or not a particular advantage is achieved by a given
embodiment is not limiting of the invention. Thus, the fol-
lowing aspects, features, embodiments and advantages are
merely illustrative and are not considered elements or limita-
tions of the appended claims except where explicitly recited
in a claim(s). Likewise, reference to “the invention” shall not
be construed as a generalization of any inventive subject
matter disclosed herein and shall not be considered to be an
element or limitation of the appended claims except where
explicitly recited in a claim(s).

Aspects of the present invention may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the
present invention may take the form of a computer program
product embodied in one or more computer readable
medium(s) having computer readable program code embod-
ied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples a computer readable
storage medium include: an electrical connection having one
or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), aread-only memory (ROM),
an erasable programmable read-only memory (EPROM or
Flash memory), an optical fiber, a portable compact disc
read-only memory (CD-ROM), an optical storage device, a
magnetic storage device, or any suitable combination of the
foregoing. In the current context, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus or device.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality and operation of possible
implementations of systems, methods and computer program

US 9,384,094 B2

7

products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). In some
alternative implementations the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. Each block of the block diagrams and/or flow-
chart illustrations, and combinations of blocks in the block
diagrams and/or flowchart illustrations can be implemented
by special-purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

FIG. 1 illustrates an example computing environment con-
figured to provide a pre-boot instant restore of system vol-
ume, according to one embodiment. As shown, a computing
system 100 is configured to perform a restore process by
booting a backup image 107 stored on a backup volume 105.
Iustratively, the backup image 107 on the backup volume
105 is to be restored to a target volume 130. To boot comput-
ing system 100, a user specifies, e.g., by accessing a BIOS
manager, to boot from a specified restore volume. Note, in
one embodiment, the restore process can be automated, e.g.,
if the BIOS/MBR 110 is unable to access a operating system
on a target volume 130, the BIOS/MBR 110 can initiate the
restore process automatically. In other cases, a user may
access BIOS interface or a boot loader may allow a user to
initiate the restore process. Once initiated, in one embodi-
ment, the BIOS/MBR 110 hooks interrupt (INT13), replacing
the regular disk I/O function configured to clear this interrupt
with a redirector function that manages the restore process
until entering a protected mode, turning over control for disk
1/0 to the operating system 120 and volume filter driver 112.
In one embodiment the redirector function is implemented as
disk filter driver 115. The disk filter driver 115 manages
interrupts generated for INT13 (I/O read request prior to
entering protected mode). While computing system 100
boots, the disk filter driver 115 processes 1/O read requests by
reading from the backup image 107 on the backup volume
105 and processes any write requests by writing data to the
target volume 130. In this example, the target volume 130
corresponds to the volume being restored, i.e., the volume to
which the backup image 107 is being restored. Note, in one
embodiment, the disk filter driver 115 may manage what
sectors are written to during the boot process. Once a given
sector is written, any subsequent reads are directed to the
partially restored target volume 130. Note, one of skill in the
art will recognize that different methods may be employed to
embed/invoke as a custom boot loader that prompts for a
recovery point to boot from, e.g., a custom MBR written to a
local disk, downloading the custom MBR from the network
server, writing custom MBR to USB disk and booting from
the USB disk.

During the boot process, responsibility for [/O reads/writes
to disk is turned over to operating system 120. In one embodi-
ment, to complete the system restore, the backup image 107
stores a volume filter driver 112 used to manage I/O requests
after taking over from the boot loader until the restore process
is complete, i.e., until all disk sectors of the backup image 107
are restored to the target volume 130. Like the disk filter
driver 115, the volume filter driver 112 directs 1/O read
requests for disk sectors that have not been restored/written to
the target volume 130 to the backup image 107 of the backup
volume 105. Note, the backup volume 105 and the restore

10

15

20

25

30

35

40

45

50

55

60

65

8

target volume 130 may be different partitions on the same
physical drive, different physical drives, and different storage
media. For example, in one embodiment, the backup volume
may 105 storing the backup image 107 may be a USB drive or
optical media (e.g., a CD- or DVD-ROM disk). Once the
system is booted, and while the volume filter driver 112
completes the restore process, a user may launch application
125 and interact with the computing system 100 in a manner
transparent to the ongoing restore process.

FIG. 2 illustrates a method 200 for performing a pre-boot
instant restore of system volume, according to one embodi-
ment. The method 200 generally corresponds to the restore
process performed using the components shown in comput-
ing system 100 of FIG. 1.

As shown, the method 200 begins at step 205, where during
an initial system boot, a computing system receives a com-
mand to restore a system volume. For example, a user inter-
acting with a BIOS interface or a boot loader may specify that
a computing system should boot from a backup image while
also restoring a primary system volume using that backup
image. In response, at step 210, an MBR or boot loader
process hooks interrupt 13 (INT13) used to perform I/O reads
from disk storage on x86 architectures, and replaces the regu-
lar interrupt handler with a redirector function, referred to
above as disk filter driver 115. The redirector function inter-
cepts I/O read requests and sends them to the backup image.
At the same time, disk sectors read in response to a specific
read I/O request are also copied to the volume being restored.
Any write requests, and read requests received after a sector
has been written to, are sent to the volume being restored.
That is, once a sector is restored, the target volume is used for
both reads and writes to that sector.

Oncethe INT13 redirector function is loaded (step 210) the
boot loader continues to load the operating system image
from the backup image (step 215). After control for /O reads
are turned over to the operating system, a volume filter driver
continues to redirect /O reads to the backup image and /O
writes to the volume being restored as appropriate (Step 220).
At step 225, once the disk image has been fully restored, the
operating system may be notified that the restore process is
complete. Further, a user can continue to use the system
without requiring a restart, as the volume filter driver operates
in effectively a pass through mode, directing all 1/O read/
write requests to the restored system volume.

FIG. 3 illustrates a method 300 for responding to an I/O
request as part of performing a pre-boot environment-free
instant restore of system volume, according to one embodi-
ment, according to one embodiment. The method 300 gener-
ally corresponds to operations performed by the redirector
function to clear the hooked interrupt 13 (INT13) while load-
ing an operating system from the backup image and later by
the volume filter driver after control for disk I/O is turned over
to the operating system booted from the backup image.

As shown, the method 300 begins at step 305 where a disk
1/O request is received. At step 310, if the I/O request is a read
request, then at step 315, the driver determines whether the
read request is for a sector that has previously been restored
during the restore process. If so, at step 320, then the read
request is performed by reading from the system volume (i.e.,
from the volume being restored). Otherwise, at step 325, the
read request is performed from the backup volume/image. In
one embodiment, the data read from the backup volume/
image in response to the read request is also written to the
system volume. Thatis, a copy onread operation is performed
to both respond to the read request as well as copy the con-
tents read in response to the read request to the volume being
restored. Returning to decision 310, if the I/O request is not a

US 9,384,094 B2

9

read request (meaning it is a write request), then at step 330,
the write request is performed by writing to the system vol-
ume (again the volume being restored). In addition, a map
indicating what sectors have been restored during the restore
process may be updated to reflect the write operation. That is,
once a disk sector in the system volume has been written to, it
should not subsequently be restored from the backup volume.
Similarly, once a read I/O operation is performed against a
given disk sector, subsequent reads may be directed to the
restored volume.

FIG. 4 illustrates an example computing system 400 con-
figured to provide an instant restore of system volume from a
backup image captured in a virtual hard disk (VHD) format
without the use of a pre-boot environment, according to one
embodiment of the invention. Like the computing system 100
of FIG. 1, a BIOS may be used to initiate a restore mode
performed against a virtual hard disk (VHD). As is known,
VHD provides a standardized file format for representing a
virtual hard disk drive (VHD). A VHD file may contain what
is found on a physical hard disk drive, such as disk partitions
and a file system, which in turn can contain files and folders.
Some operating systems, (e.g., Windows® server 2008 R2)
allows a physical computing system (e.g., computing system
400) to mount and boot from an operating system contained
within a VHD. Note, as is known, a VHD 405 may be a fully
allocated VHD, with a predefined number of blocks, whether
used ornot, ora “sparse” or “dynamic” VHD, which uses only
as many blocks as needed.

In one embodiment, a VHD 405 stores an operating system
as part of a backup image. When a restore process is initiated,
a boot manager 415 mounts the virtual VHD 405 as the boot
disk for booting computing system 400. For example, an
initial boot manager may prompt a user to specify a VHD file
to restore and a system volume 410 to which the VHD is to be
restored. At the same time, a disk filter driver 412 attaches to
the boot manager 412 to manage /O requests and perform the
restore process. While loading an operating system 429 from
the VHD 405, the disk filter driver 412 directs 1/O requests to
the VHD (reads, copied to the system volume 410) and writes
(made to the system volume 410). For every read 1/O to the
VHD, the disk filter driver reads data before passing to the
requesting process. The disk filter driver 412 also restores
read data to a target location on the system volume 410. Write
1/0 operations are performed to the system volume 410. Once
the operating system 420 is loaded and applications 425 are
launched, the disk filter driver 412 continues to restore the
system volume 410 by copying sectors from the VHD 405 to
the system volume 410. Once the system volume 410 is fully
restored the disk filter driver operates in a pass through mode,
just redirecting all write/read I/Os to the system volume.

FIG. 5 illustrates a method 500 for performing an instant
restore of system volume from a backup image captured in a
virtual hard disk (VHD) format, according to one embodi-
ment. The method 500 generally corresponds to operations
performed by a disk filter driver 412 to boot an operating
system stored in a VHD and then restore the VHD disk image
to a user-specified system volume. As shown, the method 500
begins at step 505 where a boot manager prompts a user to
identify a restore point, e.g., a VHD file providing a backup
image to boot/restore from and a target volume to restore the
backup image to. More generally, while discussed in FIG. 5,
and elsewhere herein as being a VHD formatted file, the
backup image can be VHD/VMDK or any other format that is
served as a block device by a commercial or proprietary
iSCSI software target.

At step 510, the boot manager mounts the VHD volume
and begins booting from this location as a root system volume

10

15

20

25

30

35

40

45

50

55

60

65

10

(e.g., disk 0 in a Windows Server 2008 operating environ-
ment). At the same time, a disk filter driver associates itself
with the boot manager and begins restoring the target volume
(e.g., a volume labeled as disk 1 in a Windows Server 2008
operating environment). While doing so, the disk filter driver
sends read requests to the VHD file and copies the results to
the target volume. The disk filter driver also sends write
requests to the target volume. In each case, when a sector is
restored or written to, the disk filter driver tracks a sector as
being restored. The disk filter driver also restores sectors in
the background as a low-priority task. Once the target volume
is fully restored, the disk filter driver (step 520) transitions to
a pass-through mode.

In contrast to the approaches discussed relative to FIGS.
1-5, the approach shown in FIGS. 6-9 illustrate embodiments
of the invention adapted for use with a network boot process
(e.g., PXE). FIG. 6 illustrates an example computing system
600 configured to provide an instant restore of a system
volume while booting from a backup image located on a
network location, according to one embodiment. As shown, a
computing system 600 includes a system volume 605, i.e., a
volume to be restored and also includes a pre-execution boot
loader 610. Further, the system 600 also includes a disk filter
driver 604 and a networking component 602.

When the system 600 is booted, a user may specity to boot
the system from a network location, e.g., by mounting a disk
image stored as a VHD backup exposed to the boot loader 610
as aniSCSI target 640 by network server 630. In this example,
the network server 630 exposes the VHD backup image 635
as an iSCSI target 640. That is, the network server 630
exposes the VHD file as a block device and translates read/
write request for SCSI blocks into byte ranges from the VHD
backup data 635. To restore from the backup image, the
pre-execution boot loader 610 brings up a network stack (e.g.,
networking component 602) and obtains an IP address (e.g.,
via a DHCP client request). Further, the pre-execution boot
loader 610 also implements an interrupt 13 (INT13) hook to
send all disk I/O read requests to a redirector function of the
disk filter driver 604, which operates as discussed above
relative to computing system 100 of FIG. 1. Together, this
presents the backup image 635, accessed over network 650,
as a block device to the computing system 600, specifically,
iSCSI target 640. Once configured, the pre-execution boot
loader 610 may mount the iSCSI target 640 as a block device.

In one embodiment, the pre-execution boot loader 610
begins loading operating system 620 by sending iSCSI read
requests to the VHD backup image 635. The network server
630 then determines what portions of the VHD file corre-
spond to the iSCSI request and sends them in return. Further,
the pre-execution boot loader 610 may be configured to copy
the read data to the appropriate sectors of system volume 605,
thereby initiating the restore process. Further, the pre-execu-
tion boot loader 610 may perform write requests against
system volume 605. In both cases, the pre-execution boot
loader 610 may manage a map of what sectors have been
restored and direct reads and write /O requests to the VHD
backup 635 or system volume 605 appropriate (e.g., generally
following the approach of method 300 shown in FIG. 3).

Eventually, control for disk I/O is turned over operating
system 620 and the computing system 600 stops using BIOS
services and gPXE stack for disk /O. From this point
onwards, the volume filter driver 612 redirects read I/O com-
ing to physical disk 0 (the main system volume) to the iSCSI
disk mounted by the iSCSI driver in the OS stack (i.e., to the
VHD backup image 635). The iSCSI driver communicates
with the iSCST target, which exposes VHD backup image 635
as a local block device. The volume filter driver 612 also

US 9,384,094 B2

11

copies read data to the system volume 605. Similarly, the
volume filter driver 612 sends write I/O to the system volume
605. In one embodiment, the VHD exposed by network server
as an iSCSI target will be a differencing (empty) VHD created
on top of backup image VHD 635. The volume filter driver
acts as an asynchronous mirroring driver that will perform
write-to-both-backup image-and-target destination volume.
That is, the restore process may include performing both
copy-on-read operations (copying to the restore volume for a
read) and copy-on-write (copying to the volume being
restored as well as writing to the differencing VHD).

In one embodiment, a hardware independent restore pro-
cess may be accomplished by booting from the backup image
first without commencing the restore process. Upon reboot,
an operating system may prompt for drivers required on the
new system. In some embodiments, user can also add new
drivers to the booted system while these changes are written
to a VHD differencing disk while performing a restore pro-
cess. After any new drivers are installed into the booted sys-
tem (i.e., added to the differencing disk), a user can kick off
the restore process. Similarly, a user can also resize the vol-
ume in the backup image (changes will go to differencing disk
in this case as well) after system is booted from the backup
image and then kick off the restore. The restore will then
create volume/partition of same size as source volume.

The system need not be rebooted after restore. After com-
plete system restore, the volume filter driver 612 operates in a
complete pass-through mode. That is, while completing the
restore process, and after, the user may launch and run appli-
cations 625, without having to wait for the restore process to
complete or having to restart computing system 600.

FIG. 7 illustrates a method 700 for performing an instant
restore of system volume while booting from a backup image
located on a network location, according to one embodiment.
The method 700 generally corresponds to operations per-
formed by a pre-execution boot loader 610 to boot an oper-
ating system from a backup image stored at a network loca-
tion and to restore the backup image to a user-specified
system volume.

As shown, the method 700 begins at step 705 where, during
an initial startup, a computing system launches a pre-execu-
tion boot loader, e.g., a customized version of the gPXE boot
loader. The customized boot loader may include a redirector
function used to hook interrupt 13 (INT13) and perform /O
reads while restoring a system volume from a network backup
image. As noted, the backup itself may be stored as a VHD
exposed as a block device (e.g., an iSCSI target) to the com-
puting system being booted. Accordingly, at step 710, the
pre-execution boot loader redirects INT13 to a redirector
function. At 715, the pre-execution boot loader mounts a
volume being restored (e.g., a physical disk 0). However,
once INT13 is hooked, all I/O reads are sent to a VHD file
stored exposed as an iSCSI device on a network server. Fur-
ther, once interrupt 13 (INT13) is hooked, the pre-execution
boot loader continues to load operating system files from the
restore volume (from the VHD file). The results of /O reads
are copied to the restore volume as well as passed on to the
requesting process (copy on read). I/O writes are written to a
differencing VHD. At step 720, the pre-execution boot loader
turns control for disk I/O over to the operating system loaded
from the backup store. In one embodiment, the backup image
includes a volume filter driver configured to complete the
restore process after taking over low-level disk I/O opera-
tions. Thus, at step 730, the volume filter driver manages 1/O
reads and writes while restoring the system volume from the
iSCSI target. After completing the restore process, the vol-
ume filter driver operates in a pass through mode until the

10

15

20

25

30

35

40

45

50

55

60

65

12

system is restarted. Once restarted, the computing system
then boots from the restored system volume.

In the embodiment illustrated in FIGS. 7 and 8, a custom-
ized boot loader is configured to perform the restore process
by hooking interrupt 13 (INT13) and performing the restore
process until turning over control to a volume filter driver
loaded with the operating system from the backup image. In
contrast, in an alternative embodiment, a computing system
boots from the emulated disk instead of physical disk. As a
result, the pre-execution boot loader does need to hook inter-
rupt 13 (INT13). Once booted, a volume filter driver loaded
with the operating system performs copy-on-read in the back-
ground to restore data to the restore disk. Instead of modify-
ing the pre-boot environment, a differencing VHD is disposed
in front of the backup image (itself a VHD). Like the embodi-
ment illustrated in FIGS. 7 and 8, the VHD may be exposed to
the computing system as an iSCSI target. However, while the
operating system is booted (prior to switching to protected
mode) 1/O writes are made to the iISCSI target backed by the
VHD backup file, itself behind a differencing VHD. As a
result, writes are reflected in the differencing VHD, while the
original backup VHD remains unchanged. Once the operat-
ing system enters protected mode, a volume filter driver
begins the restore process by performing copy-on-reads to the
system volume for I/O reads made to the iSCSI target and
writes to the system volume for /O writes made to the iSCSI
target. The volume filter driver also manages restoring the
system volume in the background. Once the volume filter
driver completes restoring the system volume, it enters a
complete redirect mode. That is, all I/O reads/writes are redi-
rected to the system volume.

FIG. 8 illustrates this scenario, where an example comput-
ing system 800 is configured to provide an instant restore of
system volume while booting from a backup image located on
a network location, according to one embodiment. As shown,
a computing system 800 includes a system volume 805, i.e.,
a volume to be restored, and also includes a pre-execution
boot loader 810. Further, the pre-execution boot loader 810
includes a networking component 802. The networking com-
ponent 802 initializes a network stack and obtains an IP
address (e.g., via a DHCP client request). Once configured,
the pre-execution boot loader 810 may mount the VHD
backup image iSCSI target 840 as a block device. For
example, the network server 830 may expose the differencing
VHD 834 and backup VHD 832 as an iSCSI block device, via
iSCSI target 840. Like iSCSI target 640 shown in FIG. 6,
iSCSI target 840 is configured to respond to read/write
requests from computing system 800 by translating requests
for blocks of storage into byte ranges within the VHD backup
image 832 (or differencing VHD 834).

To boot computing system 800, the pre-execution boot
loader mounts the iISCSI target backed by the differencing
VHD 834 and VHD backup data 832. As /O writes occur,
they accumulate in the differencing VHD 834. Doing so pre-
serves the integrity of the VHD backup image 832, as well as
allows an interrupted restore process to continue. After the
system 800 enters protected mode, and operating system 820
is loaded, the volume filter driver 812 performs a restore
process while users launch and execute applications 824.

FIG. 9 illustrates a method 900 for performing an instant
restore of system volume while booting from a backup image
located on a network location, according to one embodiment.
The method 900 generally corresponds to operations per-
formed by a pre-execution boot loader 810 to boot an oper-
ating system 820 from a backup image 832 stored at a net-
work location and to restore the backup image 832 to a user-
specified system volume 805.

US 9,384,094 B2

13

As shown, the method 900 begins at step 905 where, during
an initial startup, a computing system launches a pre-execu-
tion boot loader, e.g., the gPXE boot loader or other network
boot loader. As noted, the pre-execution boot loader may
mount a differencing VHD exposed as an iSCSI target. The
differencing VHD is initialized as a child of a parent VHD,
where the parent VHD contains the backup image to boot
from and to restore to a system volume. Doing so allows the
differencing VHD to accumulate I/O writes that occur while
booting the operating system in the backup image, without
changing the backup image. After loading the operating sys-
tem from the mounted backup image and switching to the
protected mode, a volume filter driver is launched. At step
910, the volume filter driver performs copy-on read opera-
tions for [/O reads directed to the iSCSI target. That is, when
an 1/O read for a sector of the iSCSI target is performed, the
volume filter driver restores the corresponding sectors on the
system volume being restored. /O writes are made to the
system volume (step 915). The volume filter driver acts as an
asynchronous mirroring driver that will perform write-to-
both-backup image-and-target destination volume. That is,
the restore process may include performing both copy-on-
read operations (copying to the restore volume for a read) and
copy-on-write (copying to the volume being restored as well
as writing to the differencing VHD). At step 920, after com-
pleting a system restore; the volume filter driver enters a
redirected mode, where all I/O reads and writes are redirected
from the mounted iSCSI target to the system volume until a
system reboot.

FIG. 10 illustrates an example computing system config-
ured to perform an instant restore of a system volume, accord-
ing to one embodiment. In this example, FIG. 10 further
illustrates the embodiment shown in FIGS. 1-2 for perform-
ing a system volume restore by directly booting from a
backup system. Of course, one of ordinary skill in the art will
readily recognize that the computing system 1000 shown in
FIG. 10 may be adapted for the embodiments shown in FIGS.
3-9.

As shown, the computing system 1000 includes, without
limitation, a central processing unit (CPU) 1005, a network
interface 1010, a network interface 1015, a memory 1020,
and storage 1030, each connected to a bus. The computing
system 1000 may also include an I/O device interface 1010
connecting I/O devices 1012 (e.g., keyboard, display and
mouse devices) to the computing system 1000.

The CPU 1005 retrieves and executes programming
instructions stored in the memory 1020 as well as stores and
retrieves application data residing in the memory 1030. The
interconnect 1017 is used to transmit programming instruc-
tions and application data between the CPU 1005, /O devices
interface 1010, storage 1030, network interface 1015, and
memory 1020. Note, CPU 1005 is included to be representa-
tive of a single CPU, multiple CPUs, a single CPU having
multiple processing cores, and the like. And the memory 1020
is generally included to be representative of a random access
memory. The storage 1030 may be a disk drive storage device.
Although shown as a single unit, the storage 1030 may be a
combination of fixed and/or removable storage devices, such
as fixed disc drives, removable memory cards, or optical
storage, and also includes network attached storage (NAS), or
a storage area-network (SAN), e.g., in the case of the net-
worked embodiments illustrated in FIGS. 6-9.

Tlustratively, the memory 1020 includes applications
1026, a redirector function 1022 configured to hook interrupt
13 (INT13), and an operating system 1024. And the storage
1030 includes a restore target volume (e.g., disk 0 in a Win-
dows® operating environment) and a backup volume (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

14

disk 1 in a Windows® operating environment). The backup
volume 1032 itself includes a disk filter driver 1034. As
described above, the redirector function 1022 is configured to
handle I/O reads prior to turning over control for I/O over to
operating system 1024 and entering protected mode. While a
boot manager loads operating system 1024, the redirector
function 1022 performs a copy-on-read process as part of
processing /O read requests. After entering protected mode,
adisk filter driver 1034 loaded by the redirector function 1022
as part of the operating system 1024 takes over for responsi-
bility for responding to /O requests. Further the disk filter
driver 1024 continues restoring the target volume 1036 from
the backup volume 1032 until the restore process is complete.

As described, embodiments presented herein provide a
variety of techniques for restoring a system volume on a
computing system without requiring the system volume to be
fully restored prior to being used or requiring the use of a
dedicated recovery environment. Instead, the computing sys-
tem is booted directly from the restore image or by redirecting
1/O interrupts to the restore image. That is, when user initiates
a restore process, the system boots from the backup itself.
Once booted, a background process can complete the restore
process.

In some embodiments, the instant restore process operates
by booting from the disk being restored. For example. the
system may boot from physical disk instead of backup image
and use an interrupt 13 (INT 13) to read from a backup
system. In another approach, the reads may be redirected to a
network backup image. In either case, once the operating
system stack comes up, operating system drivers included in
the backup image may perform redirection and restore.

For other embodiments, the instant restore process oper-
ates by booting from the backup image being restored, and
then operating in a complete passive mode once the restore is
complete. For example, a computing system being restored
may boot from backup image instead of physical disk. In such
a case, no interrupt 13 (INT13) hook is used. Instead, the
system boots from the backup image, e.g., using out of the
box solutions such as Windows® native boot VHD or a San-
boot process using gPXE. Once booted, the systems performs
redirection and restore using volume filter driver or lower
local disk filter driver

While the foregoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A computer-implemented method for restoring a system
volume from a backup image, the method comprising:

prior to launching a boot loader on a computing system,

receiving an indication to restore the system volume
from the backup image;
redirecting an interrupt associated with disk I/O to a redi-
rector function configured to perform certain read opera-
tions directed to the system volume from the backup
image, wherein the redirector function performs a read
operation by either (i) reading data from the backup
image and writing the data to the system volume being
restored or (i) reading data from the system volume;

launching the boot loader, wherein the boot loader is con-
figured to load an operating system stored in the backup
image; and

after the boot loader turns over control for disk I/O to the

operating system, launching a disk filter driver config-
ured to perform certain read operations directed to the
system volume from the backup image and to perform

US 9,384,094 B2

15

write operations by writing to the system volume,
wherein the disk filter driver performs a read operation
directed to the system volume by either (i) reading data
from the backup image and writing the data to the system
volume being restored or (ii) reading data from the sys-
tem volume, and wherein the disk filter driver is config-
ured to complete restoring the system volume from the
backup image by copying disk sectors from the backup
image to the system volume.

2. The method of claim 1, wherein the interruptis an INT13
interrupt on an x86 architecture.

3. The method of claim 1, wherein the backup image is
stored in a virtual hard disk (VHD) formatted file.

4. The method of claim 1, wherein the backup image is
stored on a local partition of a storage drive on the computing
system.

5. The method of claim 1, wherein the redirector function
performs a copy-on-read process to copy data read from the
backup image to the system volume.

6. A computer-implemented method for restoring a system
volume, the method comprising:

prior to launching a boot loader on a computing system,

receiving an indication to restore the system volume
from a virtual hard disk (VHD);

launching a disk filter driver configured to attach to a driver

configured to perform disk /O from the VHD, wherein
the disk filter driver is configured to perform read opera-
tions directed to the system volume by either (i) reading
from the VHD and writing to the system volume or (ii)
reading from the system volume and wherein the disk
filter driver is configured to perform write operations by
writing to the system volume;

after booting an operating system stored on the VHD,

completing the restoring of the system volume from the
VHD by copying disk sectors from the VHD to the
system volume, wherein the disk filter driver is config-
ured to restore the system volume, at least in part, by
performing a copy-on-read process for disk I/O reads
directed to the VHD; and

after restoring the system volume, transitioning the disk

filter driver to a pass through mode which directs disk
1/O read and write requests to the restored system vol-
ume.

7. A non-transitory computer-readable storage medium
storing instructions, which, when executed on a processor,
perform an operation for restoring a system volume from a
backup image, the operation comprising:

prior to launching a boot loader on a computing system,

receiving an indication to restore the system volume
from the backup image; and
redirecting an interrupt associated with disk /O to a redi-
rector function configured to perform certain read opera-
tions directed to the system volume from the backup
image, wherein the redirector function performs a read
operation by either (i) reading data from the backup
image and writing the data to the system volume being
restored or (i) reading data from the system volume;

launching the boot loader, wherein the boot loader is con-
figured to load an operating system stored in the backup
image; and

after the boot loader turns over control for disk I/O to the

operating system, launching a disk filter driver config-
ured to perform certain read operations directed to the
system volume from the backup image and to perform
write operations by writing to the system volume,
wherein the disk filter driver performs a read operation
directed to the system volume by either (i) reading data

10

15

20

25

30

35

40

45

50

55

60

65

16

from the backup image and writing the data to the system
volume being restored or (ii) reading data from the sys-
tem volume, and wherein the disk filter driver is config-
ured to complete restoring the system volume from the
backup image by copying disk sectors from the backup
image to the system volume.

8. The non-transitory computer-readable storage medium
of claim 7, wherein the interrupt is an INT13 interrupt on an
x86 architecture.

9. The non-transitory computer-readable storage medium
of claim 7, wherein the backup image is stored in a virtual
hard disk (VHD) formatted file.

10. The non-transitory computer-readable storage medium
of claim 7, wherein the backup image is stored on a local
partition of a storage drive on the computing system.

11. The non-transitory computer-readable storage medium
of claim 7, wherein the redirector function performs a copy-
on-read process to copy data read from the backup image to
the system volume.

12. A non-transitory computer-readable storage medium
storing instructions, which, when executed on a processor,
perform an operation for restoring a system volume, the
operation comprising:

prior to launching a boot loader on a computing system,

receiving an indication to restore the system volume
from a virtual hard disk (VHD);

launching a disk filter driver configured to attach to a driver

configured to perform disk /O from the VHD, wherein
the disk filter driver is configured to perform read opera-
tions directed to the system volume by either (i) reading
from the VHD and writing to the system volume or (ii)
reading from the system volume and wherein the disk
filter driver is configured to perform write operations by
writing to the system volume;

after booting an operating system stored on the VHD,

completing the restoring of the system volume from the
VHD by copying disk sectors from the VHD to the
system volume, wherein the disk filter driver is config-
ured to restore the system volume, at least in part, by
performing a copy-on-read process for disk I/O reads
directed to the VHD; and

after restoring the system volume, transitioning the disk

filter driver to a pass through mode which directs disk
1/O read and write requests to the restored system vol-
ume.

13. A system, comprising:

a processor; and

a memory storing code, which, when executed on the pro-

cessor, performs an operation for restoring a system

volume from a backup image, the operation comprising:

prior to launching a boot loader on a computing system,
receiving an indication to restore the system volume
from the backup image,

redirecting an interrupt associated with disk I/O to a
redirector function configured to perform certain read
operations directed to the system volume from the
backup image, wherein the redirector function per-
forms a read operation by either (i) reading data from
the backup image and writing the data to the system
volume being restored or (ii) reading data from the
system volume, and

launching the boot loader, wherein the boot loader is
configured to load an operating system stored in the
backup image, and

after the boot loader turns over control for disk I/O to the
operating system, launching a disk filter driver con-
figured to perform certain read operations directed to

US 9,384,094 B2
17

the system volume from the backup image and to
perform write operations by writing to the system
volume, wherein the disk filter driver performs a read
operation directed to the system volume by either (i)
reading data from the backup image and writing the 5
data to the system volume being restored or (ii) read-
ing data from the system volume, and wherein the
disk filter driver is configured to complete restoring
the system volume from the backup image by copying
disk sectors from the backup image to the system 10
volume.

14. The system of claim 13, wherein the interrupt is an

INT13 interrupt on an x86 architecture.

#* #* #* #* #*

